Mechanics
Logo
Abhishek Kumar

Mechanics

Mechanics topic for UPSC Physics Optional

September 21, 2023

Mechanics topics include Mechanics of Particles, Mechanics of Rigid Bodies, Mechanics of Continous Media and Special Relativity.

Preliminary Mathematics

Plane-Polar Coordinate System

finding unit vectors $\hat{r}$ and $\hat{\theta}$

plane polar coordinate system

$x = r \cos \theta$

$y = r \sin \theta$

$\tan \theta = \frac{y}{x}$

finding unit vectors $\hat{r}$ and $\hat{\theta}$

$\vec{r} = r \cos \theta \hat{i} + r \sin \theta \hat{j}$

$\hat{r} = \frac{\vec{r}}{|\vec{r}|} = \cos \theta \hat{i} + \sin \theta \hat{j}$

and

$\vec{\theta} = \frac{d\vec{r}}{d\theta} = - r \sin \theta \hat{i} + r \cos \theta \hat{j}$

$\hat{\theta} = \frac{\vec{\theta}}{|\vec{\theta}|} = - \sin \theta \hat{i} + \cos \theta \hat{j}$

$\frac{d\hat{r}}{dt} = \frac{d(\cos \theta \hat{i} + \sin \theta \hat{j})}{dt}$

$\Rightarrow \dot{\hat{r}} = - \sin \theta \cdot \dot{\theta} \hat{i} + \cos \theta \cdot \dot{\theta} \hat{j}$

$ \dot{\hat{r}} = \dot{\theta} (- \sin \theta \hat{i} + \cos \theta \hat{j})$

$\boxed{\dot{\hat{r}} = \dot{\theta} \cdot \hat{\theta}}$

similarly

$\boxed{\dot{\hat{\theta}} = - \dot{\theta} \cdot \hat{r}}$

finding velocity and acceleration from $\vec{r}$

we may use $\vec{r} = r \cdot \hat{r}$

velocity $\vec{v} = \frac{d\vec{r}}{dt} = \frac{d(r \cdot \hat{r})}{dt}$

$\Rightarrow \vec{v}=\frac{d r}{d t} \cdot \hat{r}+\frac{r d \hat{r}}{d t} = \dot{r} \hat{r}+r(\dot{\theta} \cdot \hat{\theta}) $

$\Rightarrow \boxed{ \vec{v}=\dot{r} \hat{r}+r \dot{\theta} \hat{\theta} }$

similarly acceleretion, $\vec{a}=\frac{d \vec{v}}{d t}$

$ \Rightarrow \boxed{ \vec{a}=\left(\ddot{r}-r \dot{\theta}^2\right) \hat{r}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \hat{\theta} }$

unit vectors $\hat{r}$ and $\hat{\theta}$ are perpendicular in its direction.

Spherical polar coordinates

spherical polar coordinates

Three coordinates $r, \theta, \phi$ are used to describe the position of any point.

$r \rightarrow$ radius vector

$\theta \rightarrow$ co-latitude

$\phi \rightarrow$ azimuthal angle

the plane polar coordinates can be written using spherical polar coordinates

$x = r \sin \theta \cos \phi$

$y = r \sin \theta \sin \phi$

$z = r \cos \theta$

$\vec{r} = r \sin \theta \cos \phi \hat{i} + r \sin \theta \sin \phi \hat{j} + r \cos \theta \hat{k}$

using,

$\vec{\theta} = \frac{d \vec{r}}{d \theta}$

and

$\vec{\phi} = \frac{d \vec{r}}{d \phi}$

we get,

$\hat{r} = \frac{\vec{r}}{|\vec{r}|}$

$\hat{\theta} = \frac{\vec{\theta}}{|\vec{\theta}|} = \frac{(d\vec{r}/d\theta)}{|\vec{\theta}|}$

$\hat{\phi} = \frac{\vec{\phi}}{|\vec{\phi}|} = \frac{(d\vec{r}/d\phi)}{|\vec{\phi}|}$

thus, the spherical coordinates unit vectors are given by,

$\hat{r} = \sin \theta \cos \phi \hat{i} + \sin \theta \sin \phi \hat{j} + \cos \theta \hat{k}$

$\hat{\theta} = \cos \theta \cos \phi \hat{i} + \cos \theta \sin \phi \hat{j} - \sin \theta \hat{k}$

$\hat{\phi} = - \sin \phi \hat{i} + \cos \phi \hat{j}$

and the spherical polar coordinates can be written using plane polar coordinates,

$|\vec{r}| = \sqrt{x^2 + y^2 + z^2}$

$|\vec{\theta}| = \tan ^{-1} (\frac{\sqrt{x^2 + y^2}}{z})$

$|\vec{\phi}| = \tan ^{-1} (\frac{y}{x})$

The unit vectors $\hat{r}, \hat{\theta}, \hat{\phi}$ are orthogonal.

$\boxed{ \hat{r} \times \hat{\theta} = \hat{\phi} \hat{\theta} \times \hat{\phi} = \hat{r} \hat{\phi} \times \hat{r} = \hat{\theta} }$

Line element - general infinitesimal displacement $d \vec{l}$ will be given by

$d \vec{l} = dr \hat{r} + r d \theta \space \hat{\theta} + r \sin \theta \space d \phi \space \hat{\phi}$

Volume element - infinitesimal volume element $d \vec{l}$ is the product of $dl_{r}, dl_{\theta}, dl_{\phi}$, given by

$dV = r^2 \sin \theta d \space \theta dr \space d \phi$